skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jacobson-Galán, Wynn V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract GRB 221009A is one of the brightest transients ever observed, with the highest peak gamma-ray flux for a gamma-ray burst (GRB). A Type Ic-BL supernova (SN), SN 2022xiw, was definitively detected in late-time JWST spectroscopy (t= 195 days, observer frame). However, photometric studies have found SN 2022xiw to be less luminous (10%−70%) than the canonical GRB-SN, SN 1998bw. We present late-time Hubble Space Telescope (HST)/WFC3 and JWST/NIRCam imaging of the afterglow and host galaxy of GRB 221009A att∼185, 277, and 345 days post-trigger. Our joint archival ground, HST, and JWST light-curve fits show strong support for a break in the light-curve decay slope att= 50 ± 10 days (observer frame) and a SN at <1.5× the optical/near-IR flux of SN 1998bw. This break is consistent with an interpretation as a jet break when requiring slow-cooling electrons in a wind medium with an electron energy spectral indexp> 2 andνmc. Our light curves and joint HST/JWST spectral energy distribution (SED) also show evidence for the late-time emergence of a bluer component in addition to the fading afterglow and SN. We find consistency with the interpretations that this source is either a young, massive, low-metallicity star cluster or a scattered-light echo of the afterglow with a SED shape offν∝ν2.0±1.0
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. Abstract We present the results from our extensive hard-to-soft X-ray (NuSTAR, Swift-XRT, XMM-Newton, Chandra) and meter-to-millimeter-wave radio (Giant Metrewave Radio Telescope, Very Large Array, NOEMA) monitoring campaign of the very nearby (d = 6.9 Mpc) Type II supernova (SN) 2023ixf spanning ≈4–165 days post-explosion. This unprecedented data set enables inferences on the explosion’s circumstellar medium (CSM) density and geometry. In particular, we find that the luminous X-ray emission is well modeled by thermal free–free radiation from the forward shock with rapidly decreasing photoelectric absorption with time. The radio spectrum is dominated by synchrotron radiation from the same shock. Similar to the X-rays, the level of free–free absorption affecting the radio spectrum rapidly decreases with time as a consequence of the shock propagation into the dense CSM. While the X-ray and the radio modeling independently support the presence of a dense medium corresponding to an effective mass-loss rate M ̇ 1 0 4 M yr 1 atR = (0.4–14) × 1015cm (forvw = 25 km s−1), our study points at a complex CSM density structure with asymmetries and clumps. The inferred densities are ≈10–100 times those of typical red supergiants, indicating an extreme mass-loss phase of the progenitor in the ≈200 yr preceding core collapse, which leads to the most X-ray luminous Type II SN and the one with the most delayed emergence of radio emission. These results add to the picture of the complex mass-loss history of massive stars on the verge of collapse and demonstrate the need for panchromatic campaigns to fully map their intricate environments. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026
  3. Abstract We present multiwavelength observations of the Swift shortγ-ray burst GRB 231117A, localized to an underlying galaxy at redshiftz= 0.257 at a small projected offset (∼2 kpc). We uncover long-lived X-ray Chandra X-ray Observatory and radio/millimeter (VLA, MeerKAT, and ALMA) afterglow emission, detected to ∼37 days and ∼20 days (rest frame), respectively. We measure a wide jet (∼10 . ° 4) and relatively high circumburst density (∼0.07 cm−3) compared to the short GRB population. Our data cannot be easily fit with a standard forward shock model, but they are generally well fit with the incorporation of a refreshed forward shock and a reverse shock at <1 day. We incorporate GRB 231117A into a larger sample of 132 X-ray detected events, 71 of which were radio-observed (17 cm-band detections), for a systematic study of the distributions of redshifts, jet and afterglow properties, galactocentric offsets, and local environments of events with and without detected radio afterglows. Compared to the entire short GRB population, the majority of radio-detected GRBs are at relatively low redshifts (z < 0.6) and have high circumburst densities (>10−2cm−3), consistent with their smaller (<8 kpc) projected galactocentric offsets. We additionally find that 70% of short GRBs with opening angle measurements were radio-detected, indicating the importance of radio afterglows in jet measurements, especially in the cases of wide (>10°) jets where observational evidence of collimation may only be detectable at radio wavelengths. Owing to improved observing strategies and the emergence of sensitive radio facilities, the number of radio-detected short GRBs has quadrupled in the past decade. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  4. Abstract The nearby type II supernova, SN 2023ixf in M101 exhibits signatures of early time interaction with circumstellar material in the first week postexplosion. This material may be the consequence of prior mass loss suffered by the progenitor, which possibly manifested in the form of a detectable presupernova outburst. We present an analysis of long-baseline preexplosion photometric data in theg,w,r,i,z, andyfilters from Pan-STARRS as part of the Young Supernova Experiment, spanning ∼5000 days. We find no significant detections in the Pan-STARRS preexplosion light curves. We train a multilayer perceptron neural network to classify presupernova outbursts. We find no evidence of eruptive presupernova activity to a limiting absolute magnitude of −7 mag. The limiting magnitudes from the full set ofgwrizy(average absolute magnitude ≈ −8 mag) data are consistent with previous preexplosion studies. We use deep photometry from the literature to constrain the progenitor of SN 2023ixf, finding that these data are consistent with a dusty red supergiant progenitor with luminosity log L / L ≈ 5.12 and temperature ≈ 3950 K, corresponding to a mass of 14–20M
    more » « less
  5. Abstract We present preexplosion optical and infrared (IR) imaging at the site of the type II supernova (SN II) 2023ixf in Messier 101 at 6.9 Mpc. We astrometrically registered a ground-based image of SN 2023ixf to archival Hubble Space Telescope (HST), Spitzer Space Telescope (Spitzer), and ground-based near-IR images. A single point source is detected at a position consistent with the SN at wavelengths ranging from HSTRband to Spitzer 4.5μm. Fitting with blackbody and red supergiant (RSG) spectral energy distributions (SEDs), we find that the source is anomalously cool with a significant mid-IR excess. We interpret this SED as reprocessed emission in a 8600Rcircumstellar shell of dusty material with a mass ∼5 × 10−5Msurrounding a log ( L / L ) = 4.74 ± 0.07 and T eff = 3920 160 + 200 K RSG. This luminosity is consistent with RSG models of initial mass 11M, depending on assumptions of rotation and overshooting. In addition, the counterpart was significantly variable in preexplosion Spitzer 3.6 and 4.5μm imaging, exhibiting ∼70% variability in both bands correlated across 9 yr and 29 epochs of imaging. The variations appear to have a timescale of 2.8 yr, which is consistent withκ-mechanism pulsations observed in RSGs, albeit with a much larger amplitude than RSGs such asαOrionis (Betelgeuse). 
    more » « less
  6. Abstract We present the results from our 7 yr long broadband X-ray observing campaign of SN 2014C with Chandra and NuSTAR. These coordinated observations represent the first look at the evolution of a young extragalactic SN in the 0.3–80 keV energy range in the years after core collapse. We find that the spectroscopic metamorphosis of SN 2014C from an ordinary type Ib SN into an interacting SN with copious hydrogen emission is accompanied by luminous X-rays reaching L x ≈ 5.6 × 10 40 erg s −1 (0.3–100 keV) at ∼1000 days post-explosion and declining as L x ∝ t −1 afterwards. The broadband X-ray spectrum is of thermal origin and shows clear evidence for cooling after peak, with T ( t ) ≈ 20 keV ( t / t pk ) − 0.5 . Soft X-rays of sub-keV energy suffer from large photoelectric absorption originating from the local SN environment with NH int ( t ) ≈ 3 × 10 22 ( t / 400 days ) − 1.4 cm − 2 . We interpret these findings as the result of the interaction of the SN shock with a dense ( n ≈ 10 5 − 10 6 cm −3 ), H-rich disk-like circumstellar medium (CSM) with inner radius ∼2 × 10 16 cm and extending to ∼10 17 cm. Based on the declining NH int ( t ) and X-ray luminosity evolution, we infer a CSM mass of ∼(1.2 f –2.0 f ) M ⊙ , where f is the volume filling factor. We place SN 2014C in the context of 121 core-collapse SNe with evidence for strong shock interaction with a thick circumstellar medium. Finally, we highlight the challenges that the current mass-loss theories (including wave-driven mass loss, binary interaction, and line-driven winds) face when interpreting the wide dynamic ranges of CSM parameters inferred from observations. 
    more » « less
  7. Abstract Calcium-rich (Ca-rich) transients are a new class of supernovae (SNe) that are known for their comparatively rapid evolution, modest peak luminosities, and strong nebular calcium emission lines. Currently, the progenitor systems of Ca-rich transients remain unknown. Although they exhibit spectroscopic properties not unlike core-collapse Type Ib/c SNe, nearly half are found in the outskirts of their host galaxies, which are predominantly elliptical, suggesting a closer connection to the older stellar populations of SNe Ia. In this paper, we present a compilation of publicly available multiwavelength observations of all known and/or suspected host galaxies of Ca-rich transients ranging from far-UV to IR, and use these data to characterize their stellar populations withprospector. We estimate several galaxy parameters including integrated star formation rate, stellar mass, metallicity, and age. For nine host galaxies, the observations are sensitive enough to obtain nonparametric star formation histories, from which we recover SN rates and estimate probabilities that the Ca-rich transients in each of these host galaxies originated from a core-collapse versus Type Ia-like explosion. Our work supports the notion that the population of Ca-rich transients do not come exclusively from core-collapse explosions, and must either be only from white dwarf stars or a mixed population of white dwarf stars with other channels, potentially including massive star explosions. Additional photometry and explosion site spectroscopy of larger samples of Ca-rich host galaxies will improve these estimates and better constrain the ratio of white dwarf versus massive star progenitors of Ca-rich transients. 
    more » « less
  8. Abstract Seeing pristine material from the donor star in a type Ia supernova (SN Ia) explosion can reveal the nature of the binary system. In this paper, we present photometric and spectroscopic observations of SN 2020esm, one of the best-studied SNe of the class of “super-Chandrasekhar” SNe Ia (SC SNe Ia), with data obtained −12 to +360 days relative to peak brightness, obtained from a variety of ground- and space-based telescopes. Initially misclassified as a type II supernova, SN 2020esm peaked at M B = −19.9 mag, declined slowly (Δ m 15 ( B ) = 0.92 mag), and had particularly blue UV and optical colors at early times. Photometrically and spectroscopically, SN 2020esm evolved similarly to other SC SNe Ia, showing the usual low ejecta velocities, weak intermediate-mass elements, and the enhanced fading at late times, but its early spectra are unique. Our first few spectra (corresponding to a phase of ≳10 days before peak) reveal a nearly pure carbon/oxygen atmosphere during the first days after explosion. This composition can only be produced by pristine material, relatively unaffected by nuclear burning. The lack of H and He may further indicate that SN 2020esm is the outcome of the merger of two carbon/oxygen white dwarfs. Modeling its bolometric light curve, we find an 56 Ni mass of 1.23 − 0.14 + 0.14 M ☉ and an ejecta mass of 1.75 − 0.20 + 0.32 M ☉ , in excess of the Chandrasekhar mass. Finally, we discuss possible progenitor systems and explosion mechanisms of SN 2020esm and, in general, the SC SNe Ia class. 
    more » « less
  9. null (Ed.)
  10. null (Ed.)
    ABSTRACT We present Hubble Space Telescope imaging of a pre-explosion counterpart to SN 2019yvr obtained 2.6 yr before its explosion as a type Ib supernova (SN Ib). Aligning to a post-explosion Gemini-S/GSAOI image, we demonstrate that there is a single source consistent with being the SN 2019yvr progenitor system, the second SN Ib progenitor candidate after iPTF13bvn. We also analysed pre-explosion Spitzer/Infrared Array Camera (IRAC) imaging, but we do not detect any counterparts at the SN location. SN 2019yvr was highly reddened, and comparing its spectra and photometry to those of other, less extinguished SNe Ib we derive $$E(B-V)=0.51\substack{+0.27\\ -0.16}$$ mag for SN 2019yvr. Correcting photometry of the pre-explosion source for dust reddening, we determine that this source is consistent with a log (L/L⊙) = 5.3 ± 0.2 and $$T_{\mathrm{eff}} = 6800\substack{+400\\ -200}$$ K star. This relatively cool photospheric temperature implies a radius of 320$$\substack{+30\\ -50}~\mathrm{ R}_{\odot}$$, much larger than expectations for SN Ib progenitor stars with trace amounts of hydrogen but in agreement with previously identified SN IIb progenitor systems. The photometry of the system is also consistent with binary star models that undergo common envelope evolution, leading to a primary star hydrogen envelope mass that is mostly depleted but still seemingly in conflict with the SN Ib classification of SN 2019yvr. SN 2019yvr had signatures of strong circumstellar interaction in late-time (>150 d) spectra and imaging, and so we consider eruptive mass-loss and common envelope evolution scenarios that explain the SN Ib spectroscopic class, pre-explosion counterpart, and dense circumstellar material. We also hypothesize that the apparent inflation could be caused by a quasi-photosphere formed in an extended, low-density envelope, or circumstellar matter around the primary star. 
    more » « less